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Abstract

This paper extends the central finite-volume schemes of Liu et al. [Y. Liu, C.-W. Shu, E. Tadmor, M. Zhang, Non-oscil-
latory hierarchical reconstruction for central and finite-volume schemes, Commun. Comput. Phys. 2 (2007) 933–963] on
overlapping cells to the magneto-hydrodynamic (MHD) equations. In particular, we propose a high order divergence-free
reconstruction for the magnetic field that uses the face-centered values. We also advance the magnetic field with a high
order constrained transport (CT) scheme to preserve the divergence-free condition to machine round-off error. The over-
lapping cells are natural to be used to calculate the electric field flux without an averaging procedure. We have developed a
third-order scheme which is verified by the numerical experiments. Other higher order schemes can be constructed accord-
ingly. Our central constrained transport schemes do not need characteristic decomposition, and are easy to code and com-
bine with un-split discretization of the source and parabolic terms. The overlapping cell representation of the solution is
also used to develop more compact reconstruction and less dissipative schemes. The high resolution is achieved by non-
oscillatory hierarchical reconstruction, which does not require characteristic decomposition either. The numerical compar-
isons show that the central schemes with non-CT perform as well as with CT for most of problems. Numerical examples
are given to demonstrate efficacy of the new schemes.
Published by Elsevier Inc.
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1. Introduction

In recent years there has been substantial progress in numerical magneto-hydrodynamics (MHD) based
on high-order Godunov methods. Early development of high-order Godunov schemes for MHD focused on
interpreting the MHD equations as a simple system of conservation laws. More recent efforts have focused
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on divergence-free evolution of the magnetic field. Brackbill and Barnes [8] recognized that the Lorentz force
is not orthogonal to the magnetic field if the divergence-free condition is not satisfied, and that this could
lead to incorrect dynamics. Several approaches have been proposed to handle this problem. The first is to
use a Hodge projection to clean the magnetic field of any divergence after each time step (see [29] and its
reference). Balsara and Kim [6] find that the divergence-cleaning is significantly inadequate when used for
many astrophysical applications. Powell [24] transformed the MHD equations into a well-posed eight-wave
system by adding source terms proportional to divergence of the magnetic field (r � B). Then nonphysical
numerical magnetic monopole is advected away according to the new formulation. Yet another approach
has been proposed by Dedner et al. [11] to damp the divergence errors while convecting it away by adding
diffusion to the hyperbolic convection of the r � B. The constrained transport (CT) approach uses a staggered
grid which places the magnetic field variables at the cell-face to keep machine round-off error. Recently, this
approach has been combined with various high resolution shock-capturing (HRSC) schemes by many
authors, e.g. [3,10,21,27,29].

Many HRSC schemes require full information about the eigen-structure of the underlying system either to
solve the Riemann problem at cell interfaces or for characteristic decomposition. The central schemes, on the
other hand, usually do not need characteristic decomposition. The simplest example is the Lax-Friedrichs
(LxF) scheme, which is only of first-order and very dissipative. The central scheme of Nessyahu and Tadmor
(NT) [23] provides a second-order generalization of the staggered LxF scheme. High resolution generalizations
of the NT scheme were developed since 90s as the class of central schemes in e.g. [13,15,19]. All of the high
order schemes require a high order reconstruction of the solutions. When the reconstruction order becomes
higher, characteristic decomposition is usually necessary to reduce the spurious oscillations (see [25]). Liu et
al. [18] proposed a hierarchical non-oscillatory reconstruction to remove the spurious oscillations while main-
taining the high resolution without characteristic decomposition.

The CT approach is based on a staggered collocation of the magnetic and electric field components and
employs a special discretization such that the divergence of the curl of the electric field vanishes numerically.
Most of the CT methods rely on constructing the electric field by averaging the information obtained from
solving the cell-average values of the solutions (e.g. [3,5,10,27,29]) when combining with a HRSC scheme.
Due to the averaging, some 2D CT schemes (e.g. [3,10]) cannot be reduced to the equivalent 1D solver for
plane-parallel grid aligned flow. Gardiner and Stone [12] proposed a general approach to evaluate the electric
field so that the CT scheme will recover the 1D solution for planar, grid-aligned flows. These CT schemes still
used the fluxes obtained from the Godunov step but differed in their dissipation properties for truly multi-
dimensional flows.

In this paper, we consider to apply the high order central schemes on the overlapping cells to the MHD
flows. The combination of the second order central scheme with the flux-CT of Balsara and Spicer [3] was
described by Ziegler [32]. Londrillo and Del Zanna [21] have combined the third order convex ENO (CENO)
scheme of Liu and Osher [20] with their proposed upwind CT scheme. A third-order central scheme based on
semi-discrete formulation for the nonstaggered grid is also proposed in Balbás and Tadmor [1]. A fully discrete
second-order version using the staggered grid was presented in [2]. Our method differs from theirs in: (a) our
base scheme is the central scheme on overlapping cells, which is quite different from the schemes on non-stag-
gered grid; (b) we have proposed a third-order CT scheme without any averaging by using the overlapping cell
information; (c) we have used the non-oscillatory hierarchical reconstruction to achieve the TVD properties;
and (d) we have constructed a high order (third or higher) divergence-free reconstruction for the magnetic field
using only the face-centered magnetic field.

As noted in [1], the divergence error of the magnetic field in central schemes without CT is relatively smaller
than that in the upwind-type schemes. The constraint r � B ¼ 0 is even preserved numerically for the second-
order staggered implementation of the central schemes (see [1,2]). Our numerical results in Section 4 also show
that the central schemes on overlapping grid without CT work as well as with CT for most of the examples.

The outline of the paper is as follows. In Section 2, we review the central schemes on overlapping cells and
propose a central scheme for the face-centered magnetic field. In Section 3, we derive two third-order diver-
gence-free reconstructions for the magnetic field with and without the combined cell information. Several
examples are given in Section 4, demonstrating the effectiveness of our scheme.
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2. Central schemes on overlapping cells

2.1. Central schemes for the cell-average values

For the sake of a self-contained presentation we summarize the central scheme presented by Liu et al. [18].
Consider a system of conservation law
Fig. 1
domai
ou

ot
þr � FðuÞ ¼ 0 ð1Þ
where u ¼ ðu1; . . . ; umÞT. For simplicity, we assume a uniform staggered rectangular mesh depicted in Fig. 1 for
the 2D case. Let fCIþ1=2g; I ¼ i1; i2; . . . ; id be a partition of Rd into uniform square cells depicted by solid lines
in Fig. 1 and tagged by their cell centroids at the half integers, xIþ1=2 :¼ ðI þ 1=2ÞDx. Let UIþ1=2ðtÞ be the
numerical cell average approximating ð1=jCIþ1=2jÞ

R
CIþ1=2

uðx; tÞdx, in particular, U n
Iþ1=2 ¼ UIþ1=2ðtnÞ. We will

denote these cells as U-cell subsequently. Let fDIg be the dual mesh which consists of a Dx=2-shift of the
CIþ1=2’s depicted by dash lines in Fig. 1. Let xI be the cell centroid of the cell DI . Let V IðtÞ be the numerical
cell average approximating ð1=jDI jÞ

R
DI

uðx; tÞdx. We will refer these cells as V-cells. The semi-discrete central
scheme on overlapping cells can be written as follows (for detailed derivation, see [17,18]):
d

dt
U Iþ1

2
ðtnÞ ¼ 1

Dsn

1

jCIþ1
2
j

Z
C

Iþ1
2

V nðxÞdx� Un
Iþ1

2

0@ 1A� 1

jCIþ1
2
j

Z
oC

Iþ1
2

fðV nðxÞÞ � nds; ð2Þ

d

dt
V IðtnÞ ¼ 1

Dsn

1

jDI j

Z
DI

UnðxÞdx� V n
I

� �
� 1

jDI j

Z
oDI

fðU nðxÞÞ � nds: ð3Þ
where Dsn is a parameter dictated by the CFL condition ðDsn ¼ ðCFL factorÞ � Dx=
ðmaximum characteristic speedÞÞ, UnðxÞ and V nðxÞ are higher-oder piecewise polynomial approximation on
cells CIþ1=2 and DI respectively. The actually time step-size, Dt, can be much smaller than Ds for convec-
tion-diffusion equations. The introduction of Ds avoids the Oð1=DtÞ dependence of the dissipation (see [17])
when Dt! 0. To achieve the high order accuracy, the integrals on the right-hand side of Eqs. (2) and (3) must
be evaluated by high order quadrature rule. The volume-integral is obtained by integrating the high-order
reconstruction polynomial exactly. The face-integral of the flux is evaluated by either Gaussian or other
high-order quadrature rule.

2.2. Ideal magneto-hydrodynamics (MHD) equations

The ideal MHD equations in conservative form can be written as
qt þr � ðqvÞ ¼ 0;

ðqvÞt þr � qvvT þ pI� BBT
� �

¼ 0;
. Illustration of the overlapping cells. Both the primal grid (solid line) and the overlapping grid (dashed line) cover the whole
n.
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Bt �r � ðvBT � BvTÞ ¼ 0;

Et þr � ðE þ pÞv� Bðv � BÞ½ � ¼ 0; ð4Þ
where q is density, v is the velocity, B is the magnetic field, I is the 3� 3 unit tensor, E is the total energy per
unit volume, and p ¼ pgas þ B � B=2 is the total pressure, where pgas is the gas pressure that satisfies the equa-
tion of state,
pgas ¼ ðc� 1Þ E � 1

2
qv � v� 1

2
B � B

� �
;

and c is the adiabatic index for the ideal plasma. One external constraint for magnetic field is the divergence-
free condition r � B ¼ 0.

2.3. Divergence error for the central scheme on overlapping grid

We now quantify the divergence error of the magnetic fields for the central schemes (2) and (3). We use the
U-cells as an example. The induction equation for the magnetic field is
oB

ot
¼ �r � E; ð5Þ
where the electric field E is defined by E ¼ �v� Bþ gJ, v is the velocity, J ¼ r� B is the current density, g is
the resistivity. For ideal MHD, g ¼ 0. From now on, we will consider only the ideal MHD in this paper. For a
2D MHD problem, Eq. (5) becomes
oBx

ot
¼ � oEz

oy
;

oBy

ot
¼ þ oEz

ox
; ð6Þ
where Ez ¼ �ðvxBy � vyBxÞ. For the second-order discretization, we apply the trapezoidal rule to the face-inte-
gral in (2) and (3), and then the discretization of Eq. (6) becomes
d

dt
BU

x;iþ1=2;jþ1=2ðtnÞ ¼ 1

Dsn
BV n

x;iþ1=2;jþ1=2 � BUn

x;iþ1=2;jþ1=2

� �
� 1

2Dy
EV

i;jþ1 þ EV
iþ1;jþ1 � EV

i;j � EV
iþ1;j

� �
d

dt
BU

y;iþ1=2;jþ1=2ðtnÞ ¼ 1

Dsn
BV n

y;iþ1=2;jþ1=2 � BUn

y;iþ1=2;jþ1=2

� �
þ 1

2Dx
EV

iþ1;j þ EV
iþ1;jþ1 � EV

i;j � EV
i;jþ1

� �

where EV

i;j is a point-wise value at the cell-center of the V-cell DI , and BV n

�;iþ1=2;jþ1=2 is the sum of the integral of
the reconstruction polynomials on four V-cells that cover the U-cell CIþ1

2
. If the cell corner centered divergence

is defined as (see also in [29])
ðr � BÞi;j ¼
Bx;iþ1=2;jþ1=2 þ Bx;iþ1=2;j�1=2 � Bx;i�1=2;jþ1=2 � Bx;i�1=2;j�1=2

2Dx

þ By;iþ1=2;jþ1=2 þ By;i�1=2;jþ1=2 � By;i�1=2;j�1=2 � By;iþ1=2;j�1=2

2Dy
; ð7Þ
then we have
d

dt
ðr � BÞUi;j ¼

1

Dsn
ðr � BÞV

n

i;j � ðr � BÞ
Un

i;j

� �
: ð8Þ
Similarly, for the staggered V-cell, we have
d

dt
ðr � BÞViþ1=2;jþ1=2 ¼

1

Dsn
ðr � BÞU

n

iþ1=2;jþ1=2 � ðr � BÞ
V n

iþ1=2;jþ1=2

� �
: ð9Þ
It is easy to verify that ðr � BÞUi;j ¼ 0 will be maintained if initially it is zero and ðr � BÞV
n

i;j ¼ 0 for every time
step. Similar result has been obtained for the second-order staggered fully discrete schemes [1].
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Remarks:

(1) In [7], a rigorous explanation is given as to why the cell-centered finite-volume methods fail to give stable
results on the ideal MHD equations if the normal component of the magnetic field used in the flux cal-
culation is discontinuous. However, the flux calculation for our central scheme on overlapping grid and
the staggered fully discrete schemes of [1] is within the overlapping (or staggered) cell where the magnetic
field is always continuous. This might be the reason why the central schemes of [2] and ours do not suffer
from the instability described in [7].

(2) The semi-discrete formulation of [1] on a non-staggered grid does not have similar properties as (8). The
authors in [1] claimed that r � B ¼ 0 is automatically preserved to machine round-off error, which is not
true for general problems.

(3) The condition ðr � BÞV
n

i;j ¼ 0 is not easy to satisfy either. It involves nine V-cells and requires divergence-
free reconstruction in each cell and the same reduced profile at a common face of two cells.

(4) If central schemes (2) and (3) are discretized by a third or higher order scheme, the divergence Eqs. (8)
and (9) are no longer held for the numerical divergence (7). It is possible that a similar discrete conser-
vation law to (8) is still held for a different discretization of r � B.

2.4. Central schemes for the face-centered magnetic field

The constrained transport (CT) schemes are built upon area-averaged magnetic field components located at
the faces of a grid cell, rather than volume-averaged field components located at grid cell centers. The need for
a staggered grid is often thought of as a disadvantage of CT. However, the staggered grid is essential to con-
serve the magnetic flux, which is an area- rather than volume-averaged quantity in an integral sense.

The components of the area-averaged face-centered magnetic field are collocated at different faces. For a
2D example and cell Ciþ1=2;jþ1=2, the Bx component is defined as
Fig. 2.
magne
By are
�bU
x;i;jþ1=2 ¼

1

Dy

Z yjþ1

yj

BU
x ðxi; yÞdy; ð10Þ
where the superscript U in BU
x is used to differentiate the solution is for the U-cells or for the V-cells, the lower

case b is used to indicate that this is a face-centered component of the magnetic field while the upper case B is
used for the volume-averaged cell-centered component of the magnetic field. Analogue expressions can be
written down for �bU

y;iþ1=2;j. The collocation of variables is illustrated in Fig. 2. The overlapping cells DI provide
more information for the collocated components of the magnetic field, since each face of the DI is orthogonal
to a face of CIþ1=2 at the face center. For a 2D problem, the location of the cell-centered magnetic field B of DI

is exactly the same location of the electric field E of CIþ1=2.
Illustration of the staggered grid and the collocation of the magnetic field. The electrical field E is located at the cell corner. The
tic field bx and by , and flux F x and F y are located at the face center. The other fluid variables and cell-centered magnetic field Bx and
located at the cell center.
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In the following, we will describe how to derive the central schemes for the face-centered magnetic field
using a 2D example. Applying schemes (2) and (3) directly to the induction Eq. (6), we obtain the central
schemes for the face-centered magnetic field,
d

dt
�bU

x;i;jþ1
2
ðtnÞ ¼ 1

Dsn

1

Dy

Z yjþ1

yj

bV n

x ðxi; yÞdy � �bUn

x;i;jþ1
2

 !
�

EV
z;i;jþ1 � EV

z;i;j

Dy
; ð11Þ

d

dt
�bU

y;iþ1
2;j
ðtnÞ ¼ 1

Dsn

1

Dx

Z xiþ1

xi

bV n

y ðx; yjÞdx� �bUn

y;iþ1
2;j

� �
þ

EV
z;iþ1;j � EV

z;i;j

Dx
; ð12Þ

d

dt
�bV

x;iþ1
2;j
ðtnÞ ¼ 1

Dsn

1

Dy

Z y
jþ1

2

y
j�1

2

bUn

x ðxiþ1
2
; yÞdy � �bV n

x;iþ1
2;j

0@ 1A� EU
z;iþ1

2;jþ
1
2
� EU

z;iþ1
2;j�

1
2

Dy
; ð13Þ

d

dt
�bV

y;i;jþ1
2
ðtnÞ ¼ 1

Dsn

1

Dx

Z x
iþ1

2

x
i�1

2

bUn

y ðx; yiþ1
2
Þdx� �bV n

y;i;jþ1
2

0@ 1Aþ EU
z;iþ1

2;jþ
1
2
� EU

z;i�1
2;jþ

1
2

Dx
: ð14Þ
Note that the accuracy of the scheme depends only on the order of the reconstruction polynomial and the inte-
gral scheme.

To preserve the divergence-free condition, we require
d

dt
ð�bU

x;iþ1;jþ1
2
� �bU

x;i;jþ1
2
ÞDy þ ð�bU

y;iþ1
2;jþ1
� �bU

y;iþ1
2;j
ÞDx

� �
ðtnÞ ¼ 0; ð15Þ

d

dt
ð�bV

x;iþ1
2;j
� �bV

x;i�1
2;j
ÞDy þ ð�bV

y;i;jþ1
2
� �bV

y;i;j�1
2
ÞDx

� �
ðtnÞ ¼ 0: ð16Þ
Inserting Eqs. (11)–(14) into the above equations, and using the divergence-free condition at t ¼ tn, we obtain,
Z yjþ1

yj

bV n

x ðxiþ1; yÞdy �
Z yjþ1

yj

bV n

x ðxi; yÞdy þ
Z xiþ1

xi

bV n

y ðx; yjþ1Þdx�
Z xiþ1

xi

bV n

y ðx; yjÞdx ¼ 0 ð17ÞZ y
jþ1

2

y
j�1

2

bUn

x ðxiþ1
2
; yÞdy �

Z y
jþ1

2

y
j�1

2

bUn

x ðxi�1
2
; yÞdy þ

Z x
iþ1

2

x
i�1

2

bUn

y ðx; yiþ1
2
Þdx�

Z x
iþ1

2

x
i�1

2

bUn

y ðx; yi�1
2
Þdx ¼ 0 ð18Þ
The evaluation of (17) involves four neighbor V-cells DI , where
I ¼ fðxi; yjÞ; ðxiþ1; yjÞ; ðxi; yjþ1Þ; ðxiþ1; yiþ1Þg:
To satisfy (17), we require the reconstruction polynomials on the four cells must satisfy the divergence-free
condition internally and also have the same reduced polynomials along the common boundaries of the cells.
Thus we must reconstruct at the cell boundaries first and then extend it to the whole cell. Similar conclusion is
also held for condition (18).
3. Non-oscillatory hierarchical central reconstruction

The non-oscillatory hierarchical central reconstruction for the volume-averaged quantities has been
described in Liu et al. [18]. In this section, we will focus on the non-oscillatory hierarchical central reconstruc-
tion for the face-centered magnetic field.

3.1. The third order divergence-free reconstruction over a cell

To achieve the high order accuracy, we must have a high order divergence-free reconstruction for the mag-
netic field. Balsara [4,5] has proposed a divergence-free TVD reconstruction. A similar second-order recon-
struction was also proposed in [30]. For a 2D Cartesian grid, the parabolic reconstructed polynomials can
be written as
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Bxðx; yÞ ¼ a0 þ axxþ ayy þ 1

2
axxx2 þ axyxy þ 1

2
ayyy2; ð19Þ

Byðx; yÞ ¼ b0 þ bxxþ byy þ
1

2
bxxx2 þ bxyxy þ 1

2
byyy2: ð20Þ
To fit the linear profiles at the cell faces, Balsara [4] sets ayy ¼ bxx ¼ 0, which renders the polynomial to have
only the second order accuracy.

To have the third order accuracy, we have to have a parabolic profile instead of the linear profile at the cell
faces. For a 2D problem, we assume the magnetic field at the cell faces has the following form
Bxðxi; yÞ ¼ af
0ðxiÞ þ af

y ðxiÞy þ
1

2
af

yyðxiÞy2; ð21Þ

Byðx; yjÞ ¼ bf
0ðyjÞ þ bf

x ðyjÞxþ
1

2
bf

xxðyjÞx2; ð22Þ
where the superscript f denotes that the coefficient is for the face reconstruction. It is easy to find that Eqs. (19)
and (20) cannot be matched to Eqs. (21) and (22) at the cell’s four boundaries, even with the divergence-free
condition. We then propose the following reconstructed polynomials
Bxðx; yÞ ¼ a0 þ axxþ ayy þ 1

2
axxx2 þ axyxy þ 1

2
ayyy2 þ 1

2
axyyxy2 þ 1

6
axxxx3; ð23Þ

Byðx; yÞ ¼ b0 þ bxxþ byy þ
1

2
bxxx2 þ bxyxy þ 1

2
byyy2 þ 1

2
bxxyx2y þ 1

6
byyyy3; ð24Þ
which have total 16 coefficients. Imposing the divergence-free condition in a continuous sense gives five con-
straints on the coefficients,
ax þ by ¼ 0; axx þ bxy ¼ 0; axy þ byy ¼ 0; axyy þ byyy ¼ 0; axxx þ bxxy ¼ 0: ð25Þ

Thus we have total 11 independent coefficients in the polynomials given by (23) and (24). The face profiles
described by (21) and (22) have total 12 coefficients but only 11 of them are independent since the diver-
gence-free condition must be satisfied. Integrating the magnetic fields along the boundaries of cell
Ciþ1=2;jþ1=2 ¼ ½xi; xiþ1� � ½yj; yjþ1�, we obtain r � B ¼ 0 as
af
0ðxiþ1Þ þ

1

24
ðaf

yyðxiþ1ÞÞðDyÞ2 � af
0ðxiÞ þ

1

24
ðaf

yyðxiÞÞðDyÞ2
� �� �

Dy

þ bf
0ðyjþ1Þ þ

1

24
ðbf

xxðyjþ1ÞÞðDxÞ2 � bf
0ðyjÞ þ

1

24
ðbf

xxðyjÞÞðDxÞ2
� �� �

Dx ¼ 0 ð26Þ
Matching Eqs. (23) and (24) at the cell faces with Eqs. (21) and (22) gives the following solutions for the
coefficients
ay ¼
afL

y þ afR
y

2
ð27Þ

axy ¼ �byy ¼
afR

y � afL
y

Dx
ð28Þ

ayy ¼
afL

yy þ afR
yy

2
ð29Þ

axyy ¼ �byyy ¼
afR

yy � afL
yy

Dx
ð30Þ

bx ¼
bfB

x þ bfT
x

2
ð31Þ

bxy ¼ �axx ¼
bfT

x � bfB
x

Dy
ð32Þ
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bxx ¼
bfB

xx þ bfT
xx

2
ð33Þ

bxxy ¼ �axxx ¼
bfT

xx � bfB
xx

Dy
ð34Þ

a0 ¼
1

2
afL

0 þ afR
0

� 	
� 1

8
axxðDxÞ2 ð35Þ

b0 ¼
1

2
bfB

0 þ bfT
0

� 	
� 1

8
byyðDyÞ2 ð36Þ

ax ¼
afR

0 � afL
0

Dx
� 1

24
axxxðDxÞ2 ð37Þ

by ¼
bfT

0 � bfB
0

Dy
� 1

24
byyyðDyÞ2 ð38Þ
where the subscripts L, R, T, B denote the values at the left, right, top, and bottom faces respectively for a
specific cell. It can be easily verified that if the condition (26) is satisfied, ax and by defined above satisfy
ax þ by ¼ 0.

Similarly we can obtain the fourth or higher order divergence-free reconstruction, which involves even more
terms in (23) and (24).

3.2. TVD reconstruction at the face

As mentioned in the previous subsection, the divergence-free reconstruction over a cell is determined by the
reconstruction at the four faces of the cell. In this subsection, we propose two approaches to construct a TVD
parabolic profile for the face-centered magnetic field. Both reconstructions are for the CT method where the
face-centered rather than the cell-centered magnetic fields are the primary variables. We will take BU

x at the
face x ¼ xi of the cell Ciþ1=2;jþ1=2 as an example.

3.2.1. Parabolic reconstruction at the face using only a single grid information

The easiest way to construct a parabolic profile is to use three faces at x ¼ xi: �bU
x ðxi; yiþ1=2Þ of the cell

Ciþ1=2;jþ1=2, �bU
x ðxi; yjþ3=2Þ of the cell Ciþ1=2;jþ3=2, and �bU

x ðxi; yj�1=2Þ of the cell Ciþ1=2;j�1=2, all of which belong to

a single grid U-cells. Integrating the parabolic profile bx ¼ af
0ðxi; yjþ1

2
Þ þ af

y ðxi; yjþ1
2
Þy þ 1

2
af

yyðxi; yjþ1
2
Þy2 over

the three faces, we have
�bU
x ðxi; yiþ1

2
Þ ¼ af

0ðxi; yjþ1
2
Þ þ 1

24
af

yyðxi; yjþ1
2
ÞðDyÞ2 ð39Þ

�bU
x ðxi; yj�1

2
Þ ¼ af

0ðxi; yjþ1
2
Þ � af

y ðxi; yjþ1
2
ÞDy þ 13

24
af

yyðxi; yjþ1
2
ÞðDyÞ2 ð40Þ

�bU
x ðxi; yjþ3

2
Þ ¼ af

0ðxi; yjþ1
2
Þ þ af

y ðxi; yjþ1
2
ÞDy þ 13

24
af

yyðxi; yjþ1
2
ÞðDyÞ2: ð41Þ
Solving the above equations, we obtain
af
y ðxi; yjþ1

2
Þ ¼

�bU
x ðxi; yjþ3

2
Þ � �bU

x ðxi; yj�1
2
Þ

Dy
; ð42Þ

af
yyðxi; yjþ1

2
Þ ¼

�bU
x ðxi; yjþ3

2
Þ � 2�bU

x ðxi; yiþ1
2
Þ þ �bU

x ðxi; yj�1
2
Þ

ðDyÞ2
; ð43Þ

af
0ðxi; yjþ1

2
Þ ¼ �bU

x ðxi; yiþ1
2
Þ � 1

24
af

yyðxi; yjþ1
2
ÞðDyÞ2: ð44Þ
We remark that our central parabolic reconstruction is quite different from the PPM (the piecewise-parabolic
method; Woodward and Colella [31]). PPM constructs a parabola at the cell-interface using the 1D cell-aver-
age values. For example, for the cell average �f i�2, �f i�1, �f i, and �f iþ1, the coefficients of the parabola are eval-
uated at x ¼ xi�1=2 and require four nearby cells.
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3.2.2. Parabolic reconstruction at the face using the combined cells

The overlapping cells provide information to construct a more compact parabola. The difficulty lies in that
the magnetic components of the V-cells are not collocated at the same position as the U-cells. To overcome
this difficulty, we propose to construct a divergence-free polynomial over a virtual cell that fully contains
one cell boundary.

Take BU
x at face x ¼ xi of the cell Ciþ1=2;jþ1=2 as an example (see the left plot of Fig. 3). We choose the virtual

cell to be ½xi�1=2; xiþ1=2� � ½yj; yjþ1�. We assume the polynomials over the virtual cell have the same form as Eqs.
(19) and (20), but the coefficients are evaluated at the center ðxi; yjþ1=2Þ of the virtual cell. The parabola for the
face x ¼ xi will have the same form as Eq. (21).

As illustrated in Fig. 3, we will use the face-centered U-cell values �bU
x ðxi; yjþ1=2Þ, �bU

y ðxi�1=2; yjþ1Þ,
�bU

y ðxiþ1=2; yjþ1Þ, �bU
y ðxi�1=2; yjÞ, �bU

y ðxiþ1=2; yjÞ, and face-centered V-cell values �bV
y ðxi; yjþ1=2Þ, �bV

x ðxi�1=2; yjþ1Þ,
�bV

x ðxiþ1=2; yjþ1Þ, �bV
x ðxi�1=2; yjÞ, �bV

x ðxiþ1=2; yjÞ, plus the divergence-free condition to evaluate the coefficients of
Eq. (19). After a complex manipulation, we obtain
Fig. 3.
the bo
right s
af
y ðxi; yiþ1

2
Þ ¼

~bxðxi; yjþ1Þ � ~bxðxi; yjÞ
Dy

ð45Þ

af
yyðxi; yiþ1

2
Þ ¼

~bxðxi; yjþ1Þ þ ~bxðxi; yjÞ � 2�bU
x ðxi; yjþ1=2Þ

1
2
Dy

� 	2

� Dx

ðDyÞ3
�bU

y ðxiþ1=2; yjþ1Þ þ �bU
y ðxi�1=2; yjÞ � �bU

y ðxi�1=2; yjþ1Þ � �bU
y ðxiþ1=2; yjÞ

� �
ð46Þ

af
0ðxi; yjþ1

2
Þ ¼ �bU

x ðxi; yjþ1=2Þ �
1

24
af

yyðxi; yjþ1
2
ÞðDyÞ2; ð47Þ
where ~bxðxi; yjÞ ¼ 1
2
ð�bV

x ðxi�1=2; yjÞ þ �bV
x ðxiþ1=2; yjÞÞ. Similarly we can construct the parabola for the magnetic

components BU
y , BV

x , and BV
y .

Apparently the reconstruction (45)–(47) is more complicated than (42)–(44). However, by using the over-
lapping cells, the reconstruction (45)–(47) becomes more compact. This can be seen from the radius of the disk

that covers the reconstruction stencil. The radius is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxÞ2 þ ðDyÞ2=4

q
for (45)–(47), and is 3Dy=2 for (42)–

(44). For a uniform grid with Dx ¼ Dy, (45)–(47) is definitely more compact and hence will be less dissipative.
This will be verified by the numerical examples in Section 4.

3.2.3. Non-oscillatory hierarchical reconstruction

The central reconstruction out of nearby cell averages generates polynomial in each cell. For solutions that
contain discontinuities, Gibbs phenomenon could appear in the reconstructed polynomials. Liu et al. [18] pro-
The stencils used in parabolic reconstruction with the combined cell for the face-averaged magnetic fields. The dashed lines denote
undaries of the V-cell, and the solid lines denote the boundaries of the U-cell. The left stencil is for the reconstruction of �bU

x , and the
tencil is for the reconstruction of �bU

y .
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posed a non-oscillatory hierarchical reconstruction procedure to remove the possible oscillations and achieve
high resolution near discontinuities.

To preserve the divergence-free condition r � B ¼ 0, we must perform the non-oscillatory limiting process-
ing to the central reconstruction of the magnetic fields at the faces. Once we have a high order central recon-
struction for the face-averaged magnetic field, e.g, (42)–(44) or (45)–(47), for every face, the application of the
non-oscillatory hierarchical reconstruction is straightforward. Take the parabolic reconstruction Eq. (21) as
an example. For the faces at ðxi; yJþ1=2Þ, J ¼ j� 1; j; jþ 1, we have bxðxi; yJþ1=2Þ ¼ af

0ðxi; yJþ1=2Þþ
af

y ðxi; yJþ1=2Þy þ 1
2
af

yyðxi; yJþ1=2Þy2. First we take the derivative with respect to y, which yields
Lðxi; yJþ1
2
Þ ¼ af

y ðxi; yJþ1
2
Þ þ af

yyðxi; yJþ1
2
Þy; J ¼ j� 1; j; jþ 1: ð48Þ
Second, we calculate the face-average of Lðxi; yJþ1=2Þ on the face at ðxi; yJþ1
2
Þ to obtain Lðxi; yJþ1=2Þ ¼

af
y ðxi; yJþ1=2Þ. With the three new face averages fLJ : J ¼ j� 1; j; jþ 1g, we can apply an essentially non-oscil-

latory (ENO) procedure to reconstruct a non-oscillatory linear polynomial
eLðxi; yjþ1
2
Þ ¼ ~af

y ðxi; yjþ1
2
Þ þ ~af

yyðxi; yjþ1
2
Þy; ð49Þ
for the face at ðxi; yjþ1=2Þ, where
~af
yy ¼ ENO

Lðxi; yjþ1
2
Þ � Lðxi; yj�1

2
Þ

Dy
;
Lðxi; yjþ3

2
Þ � Lðxi; yjþ1

2
Þ

Dy

 !
: ð50Þ
and
ENOðc1; c2; . . . ; cmÞ ¼ cj; if jcjj ¼ minðjc1j; jc2j; . . . ; jcmjÞ: ð51Þ

Inserting ~af

yy into the parabola, we then calculate the face averages for the linear part of the reconstruction
LJ ðxiÞ ¼ ~af
0ðxi; yjþ1

2
Þ þ ~af

y ðxi; yjþ1
2
Þðy � yjþ1

2
Þ; ð52Þ
on the three faces J ¼ j� 1; j; jþ 1, which yields
LJ ðxiÞ ¼ �bx;i;Jþ1
2
� 1

2
~af

yy

Z Jþ1
2

J�1
2

ðy � yjþ1
2
Þ2dy; J ¼ j� 1; j; jþ 1: ð53Þ
where �bx;i;Jþ1
2
, J ¼ j� 1; j; jþ 1, are the face averages at the current time. We again apply an ENO procedure

to evaluate af
y , which yields,
~af
y ¼ ENO

LjðxiÞ � Lj�1ðxiÞ
Dy

;
Ljþ1ðxiÞ � LjðxiÞ

Dy

� �
: ð54Þ
The ENO procedure can be replaced with an MUSCL procedure by a different limiter, such as minmod lim-
iter, van Leer limiter, Woodward limiter, and super-bee limiter. To preserve the face-averaged value, we set
~af
0 ¼ �bx;i;jþ1

2
� 1

24
~af

yyðDyÞ2: ð55Þ
Finally, we obtain the non-oscillatory reconstruction
~bxðxi; yjþ1
2
Þ ¼ ~af

0 þ ~af
y ðy � yjþ1

2
Þ þ 1

2
~af

yyðy � yjþ1
2
Þ2 ð56Þ
3.3. Volume-averaged cell-centered magnetic field

Unlike most of Godunov methods, the volume-averaged cell-centered magnetic field is rarely used in our
central scheme using the face-centered magnetic field. In fact, the only case where the cell-centered magnetic
field are used is in the time step prediction. The cell-centered magnetic field is obtained by
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Bx ¼ a0 þ
1

24
ðaxxðDxÞ2 þ ayyðDyÞ2Þ; ð57Þ

By ¼ b0 þ
1

24
ðbxxðDxÞ2 þ byyðDyÞ2Þ: ð58Þ
If we predict the time step during flux evaluation, the cell-centered magnetic field will not be used in the time
evolution.

The pressure is only needed at the cell interface where the point-wise flux is calculated. It is derived from the
internal energy density. The negative pressure is acceptable in our scheme though it is not physical. It usually
occurs near a strong shock. Although the negative pressure will not break down the simulation, a fix can
improve the overall pressure profile.

4. Numerical experiment

In this section, we provide some examples to test our third-order schemes with divergence-free reconstruc-
tion. To achieve the third-order in time, we apply the third-order TVD Runge-Kutta time integration (see
[28]), which is
U ð1Þ ¼ U n þ DtRðUnÞ; ð59Þ

U ð2Þ ¼ 3

4
Un þ 1

4
U ð1Þ þ 1

4
DtRðU ð1ÞÞ; ð60Þ

U nþ1 ¼ 1

3
Un þ 2

3
U ð2Þ þ 2

3
DtRðU ð2ÞÞ; ð61Þ
where RðUÞ is the right-hand side of the ODE system obtained from un-split spatial discretization.
As pointed out in [18], the hierarchical reconstruction is expensive and takes about 30% of CPU time for

our third-order scheme. As in [18], we use a low cost smoothness detector which measures the jump of the
solution at the cell-center from reconstruction of neighbor cells. If the jump is smaller than ðDxÞ3=2, the cell
is considered to be in the smooth region and the hierarchical reconstruction procedure will not be performed.
Usually the density and pressure are chosen as the candidate variables in the smoothness detector. For the
face-centered magnetic field, our smoothness detector will detect the jump of the magnetic field at the face cen-
ter. The ENO limiter (51) is used in all of the examples.

For comparison, we quantify the divergence of the magnetic field at a cell by integrating the reconstructed
polynomials for Bx and By at the cell boundaries. For the parabolic reconstruction, it is approximated by
r � B ¼ ax þ by ; ð62Þ

where ax and by are the coefficients of the first-order terms in the reconstructed polynomial of Bx and By

respectively.
The time step is determined by the CFL condition, which depends on the cell size and maximum signal

speed over the whole domain. Without specification, the CFL number of 0.4 which is suggested in Liu et
al. [18] is used. Unless specified otherwise, we will use c ¼ 5=3. For all the example, we show only the numer-
ical results of the U-cells.

4.1. Smooth Alfvén wave problem

We first solve the smooth Alfvén wave problem [29] to check the accuracy of our proposed scheme. This prob-
lem describes propagation of a circularly polarized Alfvén wave in the domain ½0; 1= cos a� � ½0; 1= sin a�where a
is the wave propagation angle relative to the x-axis. The initial conditions are taken as
q ¼ 1; vjj ¼ 0; v? ¼ 0:1 sinð2pnÞ; vz ¼ 0:1 cosð2pnÞ
p ¼ 0:1; Bjj ¼ 1; B? ¼ v?; Bz ¼ vz
where n ¼ x cosðaÞ þ y sinðaÞ. In this problem, the Alfvén wave propagates periodically towards the origin
with a constant Alfvén speed Bjj=

ffiffiffi
q
p ¼ 1 and returns to its initial state whenever t becomes an integer. In



Table 1
Numerical errors (dN ) and convergence order (RN ) for the smooth Alfvén wave problem at t ¼ 2 with and without CT

N Non-CT CT

dN RN dN RN

16 0.0663255 – 0.0709366 –
32 0.0085469 2.96 0.0092040 2.95
64 0.0010724 2.99 0.0011562 2.99

128 0.0001341 3.00 0.0001446 3.00
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our test, we use a ¼ 45�. The domain is divided into N � N grid. As in [29], for each N, we estimate the relative
numerical error of any fluid variable v by
dN ðvÞ ¼
PN

j¼1

PN
k¼1jvN

j;k � vexact
j;k jPN

j¼1

PN
k¼1jvexact

j;k j
; ð63Þ
Table 1 shows that average numerical errors defined by
dN ¼
1

4
ðdN ðv?Þ þ dNðvzÞ þ dN ðB?Þ þ dN ðBzÞÞ;
and the corresponding convergence orders, defined by RN ¼ logðdN=dN=2Þ=logð2Þ, for both divergence-free con-
strained transport (CT) method and non-CT central schemes. For the CT method, we have also tested the two
different face reconstructions described in Section 3, using or not using combined cells. The results are almost
identical for this smooth problem and propagation angle. Therefore, we show only the results of using the
combined cells in Table 1. The results show clearly that we have achieved the expected third-order accuracy
for both CT and non-CT methods. The error of the CT method has only slight increase (<10%) over the error
of the non-CT method, which is different from the results obtained by the second-order method proposed in
Rossmanith [26], where the error for the CT method is more than double than the non-CT method.

4.2. Numerical dissipation and long term decay of Alfvén waves

Next we consider a problem proposed by Balsara [5], which tried to quantify the amount of numerical dis-
sipation introduced by a numerical scheme for ideal MHD. Specifically, the test problem measures the decay
of the amplitude of a linearly degenerate Alfvén wave that propagates at a shallow angle to the y-axis. We use
the same angle, a ¼ tanð1=6Þ ¼ 9:462�, and the same set of initial conditions as Balsara [5] except that the
magnetic field is normalized with a 1=

ffiffiffiffiffiffi
4p
p

factor. With the normalization, the Bz and vz have the same exact
solutions and thus have similar decay rates.

The computation domain is ½�3; 3� � ½�3; 3� on a 120� 120 grid until time t ¼ 129. The maximum values of
the vz and Bz should remain constant in time for the exact solution, but decay due to the numerical dissipation.
These quantities are plotted versus time in Fig. 4. Since Bz and vz have similar decay rates, we plot here only
the result of vz. For comparison, we have tested two different reconstructions described in Section 3, using or
not using combined cells. Fig. 4 shows that the more compact reconstruction using the combined cells is less
dissipative. We have tested the results of using Dsn and a smaller time step Dtn in scheme (2) and (3). We set Dsn

to be the value controlled by the CFL number, and Dtn ¼ 0:1Dsn. Fig. 4 shows that we have achieved less dis-
sipation using the smaller step than using Dtn ¼ Dsn. Therefore our scheme is insensitive to small time step and
can be applied to resistive MHD, which may require a smaller time step, without adding much numerical
dissipation.

Fig. 4 shows that our third-order scheme is less dissipative than the ‘‘us,r=3WENO,HLL” (which refers to
the unsplit solver with the fifth-order WENO reconstruction and HLLE-type Riemann solver) case of Balsara
[5] but more dissipative than the ‘‘us,r=3WENO,Roe” case (see Fig. 4 of [5]). Note that ‘‘r=3WENO” of Bal-
sara uses the fifth-order reconstruction while we use the third-order reconstruction.
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4.3. Oblique shock tube problem

This shock-tube problem is originally from Brio and Wu [9], which is a classical test problem for ideal
MHD codes. It is a 1-D shock-tube problem with the initial states
ðq; vk; v?; p;B?;Bz; pÞ ¼
ð1; 0; 0; 0; 1; 0; 1Þ; left;

ð0:125; 0; 0; 0;�1; 0; 0:1Þ; right;

�

where k refers to the direction along the normal of the shock front, ? refers to the direction perpendicular to
the normal of the shock front but still in the computational plane, and Bk ¼ 0:75. We solve it as a fully 2-D
problem with an angle a ¼ 45� between the shock interface and y-axes. The initial domain and grid set-up are
similar to [29] with a shifted periodic boundary conditions. We use 400� 4 grid to resolve a computational
domain of ½0; 1� � ½0; 0:01�. The Riemann solution for this example contains two fast shocks and two rarefac-
tion waves, a slow compound, a contact discontinuity, and a slow shock (see Fig. 5 for the numerical results).

Unlike other Godunov schemes, the central scheme without CT performs very well for this shock tube
problem. There is no noticeable difference between the results of CT and non-CT methods in the density
and perpendicular component of the magnetic field (B? ¼ �bx sin aþ by cos a) plot. The divergence error with-
out CT is also very small (see Fig. 6) and the parallel component (Bjj ¼ bx cos aþ by sin a) of the magnetic field
is almost conserved. Note that the Bjj ¼ 0:75 is exactly conserved for the CT scheme.

4.4. Field loop advection

This is a problem proposed by Gardiner and Stone [12] to show the importance of maintaining divergence-
free magnetic field during the time evolution. The computational domain is ½�1; 1� � ½�0:5; 0:5� and resolved
by 2N � N grid, and has periodic boundary conditions on both x- and y-boundaries. We adopt a similar set of
initial conditions as [12], which is
q ¼ 1; p ¼ 1; vx ¼ 2; vy ¼ 1; vz ¼ 1; Bz ¼ 0:
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Note that we have set vz ¼ 1 to test whether Bz remains zero to round-off. The Bx and By components are ini-
tialized from the z-component of the magnetic potential
Az ¼
A0ðR� rÞ; if r 6 R

0 if r > R

�

where A0 ¼ 10�3, R ¼ 0:3 and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Since A0 is so small, the magnetic field is essentially a passive

scalar.
To our surprise, both CT and non-CT work well for this problem. Fig. 7 shows the magnetic field lines

obtained by contouring the magnetic potential Az at the beginning and at time t ¼ 2. Since r � B 6¼ 0 for
the non-CT method, the magnetic potential is calculated approximately with the face-centered magnetic field
defined by
bx;i;jþ1=2 ¼
1

2
ðBx;iþ1=2;jþ1=2 þ Bx;i�1=2;jþ1=2Þ; by;iþ1=2;j ¼

1

2
ðBy;iþ1=2;jþ1=2 þ Bx;iþ1=2;j�1=2Þ:
The magnetic field lines for the non-CT scheme are slightly twisted due to the divergence error. Fig. 8 shows
the dissipation of the magnetic energy as a function of time. The non-CT scheme is slightly less dissipative
than the CT scheme. It is clear that the limiters play important role in the dissipation rate of the schemes.
The CT scheme not only preserves the magnetic field lines better than the non-CT scheme, it also can preserve
Bz ¼ 0 to the round-off error (see the right plot of the Fig. 8).
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Most of high resolution shock-capturing (HRSC) schemes fail to solve this problem correctly without CT. To
show the difference between our high-order central scheme on overlapping grid with the non-staggered central
schemes in [1], we compare gray-scale images of the magnetic pressure ðB2

x þ B2
yÞ at t ¼ 0:15 and t ¼ 2. The
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third-order schemes are tested. The magnetic field loop is passively advected around the grid with a period of 1.
However, for the central scheme of [1] without CT, the field loop disintegrates before completing a fraction of an
orbital period (see Fig. 9). Our third-order scheme without CT preserves the field loop quite well at t ¼ 0:15, but
not as well as with CT at t ¼ 2. The divergence error plays an important role in disintegrating the field loop. Fig.
10 shows the divergence error of the magnetic fields for central scheme of [1] on non-staggered grid and the our
central scheme on overlapping grid. It is clear that our scheme has much smaller divergence error than that of [1].

4.5. Current sheet

This is a test problem also suggested by Gardiner and Stone [12] to discriminate between algorithms and
test the numerical dissipation and robustness of the integration algorithm.

The computational domain, ½0; 1� � ½0; 1�, is resolved by 200� 200 grid and has periodic boundary condi-
tions on both x- and y-boundaries. The initial condition is
ig. 9.
dvectio
rid. Th
enter is
q ¼ 1; p ¼ 0:1; vx ¼ v0 sinð2pyÞ; vy ¼ vz ¼ 0; Bx ¼ Bz ¼ 0;
and
By ¼
B0 if 0 6 x < 1

4

�B0 if 1
4
6 x 6 3

4

B0 if x > 3
4

8><>: ð64Þ
Gray-scale images of the magnetic pressure ðB2
x þ B2

yÞ at t ¼ 0:15 (top two) and t ¼ 2 (middle two) without CT for the field loop
n problem. The left two are for the non-staggered central schemes of [1]. The right two are for our central schemes on overlapping
e bottom two are the reference solutions for the initial field loop at t ¼ 0 and the CT results at t ¼ 2. The emergence of a hole at the
caused by reconnection.
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where B0 ¼ 1, and v0 ¼ 0:1. Gardiner and Stone [12] provides a detailed physical description of this problem.
To make the problem more difficult to solve, we set v0 ¼ 2:0, and p ¼ 0:05.

Fig. 11 shows the magnetic field lines at different times. The magnetic potential for the non-CT schemes is
calculated approximately in the same way as for the field-loop example. Because of the two current sheets in
the problem (at x ¼ 0:25 and x ¼ 0:75), reconnection inevitably occurs. As reconnection takes place, the mag-
netic energy is converted into thermal energy. Because b ¼ 2p=B2 < 1, the reconnection drives strong over-
pressured regions that launch magneto-sonic waves transverse to the field. Moreover, as reconnection changes
the topology of the field lines, magnetic islands will form, grow, and merge. Since the nonlinear dynamics lead
to strong compressions and rarefactions, it is important to make sure that the algorithm can follow this evo-
Fig. 11. Time evolution of the magnetic field lines for the current sheet problem. Time increases from left to right and top to bottom in
normal reading order. The plotted contour levels of Az (50 levels) are uniform over the sequences of images at time
t ¼ ð0:0; 1:0; 2:0; 3:0; 4:0; 4:0Þ. The last plot is for non-CT method.
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lution for as long as possible without crashing. By either increasing v0 or decreasing p (and therefore b), the
dynamics becomes increasing difficult for the numerical algorithm to solve. For our implementation of the
third-order central scheme with and without CT, the code crashes at late times when b 6 0:001 (for
v0 ¼ 0:1), and when v0 P 9 (for b ¼ 0:1).

Fig. 12 shows the divergence error comparison between the CT and non-CT methods. Again the diver-
gence-error for the non-CT method is quite small.

For a quantitative comparison of the various schemes, we calculate the relative numerical error as in [29]. In
the absence of the exact solution, a high resolution numerical solution is used as a reference for comparison.
For this example, the reference solution is calculated using 400� 400 cells. The relative numerical error of var-
iable v obtained on an N � N grid is defined as
F

Table
Conve

CT
Non-C
dN ðvÞ ¼
PN

j¼1

PM
k¼1jvN

j;k � vhigh
j;k jPN

j¼1

PN
k¼1jv

high
j;k j

; ð65Þ
where vhigh is the coarsened high resolution solution. The numerical error is measured for the primitive vari-
ables. The averaged error �dN is defined as an averaged dN ðvÞ for all the (non-zero) primitive variables v. Table 2
lists the average relative errors for the primitive variables for three resolutions (50� 50, 100� 100, and
200� 200). For this discontinuity dominant flow, the convergence rate is around 1.0.

4.6. The blast problem

This test problem was first introduced in Balsara and Spicer [3]. It was about a spherical strong fast mag-
neto-sonic shock propagates through a low-b (b ¼ 0:000251) ambient plasma. It was used in [5] to show the
advantages of the divergence-free reconstruction. The set-up of the problem is exactly the same as was
described in [3]: q ¼ 1, v ¼ 0, Bx ¼ 100=

ffiffiffiffiffiffi
4p
p

, By ¼ Bz ¼ 0, p ¼ 1000 within a circle of radius R ¼ 0:1 and
ig. 12. Divergence of the magnetic field at t ¼ 4 using CT (left) and non-CT (right) method for the current sheet problem.

2
rgence of averaged errors in the current-sheet test

t ¼ 1:0 t ¼ 4:0

�d50
�d100

�d200
�d50

�d100
�d200

0.2204 0.1168 0.0507 0.4173 0.1656 0.0956
T 0.2259 0.1129 0.0604 0.4332 0.1816 0.0998
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p ¼ 0:1 elsewhere. 200� 200 grid with outflow boundary conditions is used. The final time is 0.01. The density
contour plots both CT and non-CT methods are shown in Fig. 13. We also show the divergence error of the
magnetic field in Fig. 14.

As pointed out by Balsara [5], this is a very stringent problem to solve with the parameters we have used.
Our second-order Godunov method (see [16]) cannot work without the energy-fix defined in [3]. However, our
constrained transport third-order central scheme on overlapping cells does not fail without the energy fix. We
remark that the pressure can become negative near the shock front using our method (see Fig. 15). However,
the negative pressure does not break down our integration. Using a more diffusive limiter combined with neg-
ative pressure fix can slightly improve the solutions (see Fig. 16), especially the pressure profile.

4.7. Rotor problem

This test problem is taken from Ref. [3]. It was also used by Tóth [29] to compare several numerical
schemes. We use exactly the same set-up of the problem as was described in [29].
Fig. 13. Density contour plot using CT (left) and non-CT (right) method at t ¼ 0:01 for the MHD blast problem. 40 contour-lines between
0.2 and 4.45 are used.

Fig. 14. Divergence of the magnetic field at t ¼ 0:01 using CT (left) and non-CT (right) method for the MHD blast problem.



Fig. 15. Overall pressure plot (left) and the negative pressure region (right) at t ¼ 0:01 for the MHD blast problem.

Fig. 16. Density contour plot (left) and logscale (base 10) plot of the pressure (right) using CT after pressure fix at t ¼ 0:01 for the MHD
blast problem. 40 contour-lines between 0.2 to 4.45 are used.
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We solve the first rotor problem of Ref. [29] to time 0.15. A disk radius R ¼ 0:1 made up of dense fluid
(q ¼ 10) rotates with a high angular velocity (x ¼ 20) in a static, magnetized (Bx ¼ 5) background with uni-
form density and pressure (q ¼ p ¼ 1). The adiabatic index is c ¼ 1:4. It was reported by Tóth [29] that many
one step TVD base scheme failed to solve this problem due to negative pressure. We did not encounter any
difficulties using our central scheme on overlapping cells with and without CT. Londrillo and Del Zanna
[22] reported that the Balsara and Spicer’s flux-CT approach produces a lot of numerical noise inside the disk,
which is also seen in Toth’s plot ([29]). However, we have not seen such kind of noises even in the results of our
central scheme without CT (see Fig. 17). Fig. 18 shows the divergence-error in the entire domain.

4.8. Orszag–Tang vortex

The problem has becomes a standard test problem for 2D numerical MHD simulations (e.g. [10,14,21]).
The initial conditions are vx ¼ � sinðyÞ, vy ¼ sinðxÞ, Bx ¼ � sinðyÞ, By ¼ sinð2xÞ, q ¼ c2, p ¼ c, vz ¼ Bz ¼ 0.
The computational domain is a square ½0; 2p� � ½0; 2p� with periodic boundary conditions along both bound-
aries. The final output time t ¼ p.



Fig. 17. Contour plot of the magnetic pressure (B2=2) distribution with CT (left) and without CT (right) at t ¼ 0:15 for the rotor problem.
31 contour-lines between 0.0787 and 2.5315 are used.

Fig. 18. Divergence error distribution of the magnetic field with CT (left) and without CT (right) at t ¼ 0:15 for the rotor problem.
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Fig.19 shows a Schlieren plot of the thermal pressure at time t ¼ p using our third-order CT central scheme
on overlapping cells on a 256� 256 grid. A slice of this solution at y ¼1.9267 is also shown in Fig. 19. Our
results compare well with those given in [10,26,29].

As discussed in [26], we also compare the solutions at t ¼ 0:633 with and without CT. Fig. 20 shows that
our method without CT does not produce negative pressure throughout the simulations. The solutions with
and without CT are almost identical. Our divergence errors at final time are also much smaller than those
shown in [26]. At least for this problem we have not seen noticeable difference between CT and non-CT
methods.

The Orszag–Tang vortex problem starts from smooth initial condition data, but gradually the flow becomes
very complex as expected from a transition towards turbulence. Table 3 lists the average relative errors for the
primitive variables for three resolutions (64� 64, 128� 128, and 256� 256). The reference solution is calcu-
lated with 512� 512 grid. At time T ¼ 0:633, the flow is still quite smooth, although some discontinuities are
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Fig. 19. The thermal pressure at t ¼ p for the Orszag–Tang vortex problem. Shown are a Schlieren plot over the entire domain (left) and a
horizontal slice at y ¼ 1:9267 (right). CT is used.
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already present. The CT scheme converges with a convergence rate of approximate 2.7, and the non-CT
scheme converges with a rate of approximate 2.15. Both rates are better than the first order accuracy obtained
in dominantly discontinuous problems, but worse than the third-order accuracy expected for completely
smooth flow.

5. Conclusion

We have applied the central scheme on overlapping cells to the MHD simulations. We have proposed a
third-order divergence-free reconstruction and corresponding third-order CT scheme to preserve the diver-
gence-free condition for the magnetic field throughout the simulation. Numerical examples show we have truly
achieved the expected third-order accuracy for smooth problems. Our third-order divergence-free reconstruc-
tion can also be applied to non-staggered grid. Our approach can also be extended to construct higher than the
third-order schemes without difficulty.

The overlapping cells provide a natural way to evaluate the electric field at the staggered points for the CT
scheme without spatial averaging. The two-dimensional CT scheme based on this reduces exactly to the base
one-dimensional algorithm for planar grid-aligned flows. Even though using the overlapping cells is more
expensive, Liu et al. [18] show it is more robust without characteristic decomposition for higher order recon-
structions. Our experience also shows that the central scheme on the overlapping cells achieves more accurate
and higher resolution results than the corresponding central scheme on the non-staggered grid. A potential
weakness is in its extension to the adaptive mesh refinement (AMR) grid.

Several numerical examples show that the high order central scheme on overlapping cells without CT has
extremely good properties in maintaining low divergence-error, even for strong shock problem. It also has less
numerical dissipation than with CT due to a more compact stencil used. We also observe that adding CT will
increase the computational cost by 30%. We have yet to find example to show that the CT results are much
more superior than without CT.

While the algorithm presented in this paper has focused solely on the two-dimensional case, the results pre-
sented here can be extended to three dimensions. This extension principally involves a more complex high
order divergence-free reconstruction (see Appendix A) and high order quadrature rule on the surfaces and
edges. The other details of this extension are beyond the scope of this paper and will be presented elsewhere.



Fig. 20. The thermal pressure at t ¼ 0:633 for the Orszag–Tang vortex problem. The top two show Schlieren plots over the entire domain
with CT (left) and without CT (right). The bottom left shows the divergence error over the entire domain without CT at final time t ¼ p.
The bottom right shows a horizontal slice at y ¼ 2:3439 for both with CT and without CT at time t ¼ 0:633.

Table 3
Convergence of averaged errors in the Orszag–Tang test

t ¼ 0:633 t ¼ 3:14

�d64
�d128

�d256
�d64

�d128
�d256

CT 2.347E-3 3.807E-4 5.552E-5 8.025E-2 4.013E-2 1.612E-2
Non-CT 3.394E-3 7.552E-4 1.722E-4 7.877E-2 3.956E-2 1.657E-2
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Appendix A. The third order divergence-free reconstruction in 3D

In 3D, the parabolic profile on the 2D surface of a cell can be written as
Bxðy; zÞ ¼ af
0 þ af

y y þ af
z zþ 1

2
af

yyy2 þ af
yzyzþ 1

2
af

zzz
2; ðA:1Þ

Byðx; zÞ ¼ bf
0 þ bf

x xþ bf
z zþ 1

2
bf

xxx
2 þ bf

xzxzþ 1

2
bf

zzz
2; ðA:2Þ

Bzðx; yÞ ¼ cf
0 þ cf

x xþ cf
y y þ 1

2
cf

xxx
2 þ cf

xyxy þ 1

2
cf

yyy2; ðA:3Þ
where again the superscript f denotes that the coefficient is for the face reconstruction. The reconstructed field
in the interior of the cell that matches the parabolic profile on the cell faces can be written as
Bxðx; y; zÞ ¼ a0 þ axxþ ayy þ azzþ
1

2
axxx2 þ axyxy þ axzxzþ 1

2
ayyy2 þ ayzyz

þ 1

2
azzz2 þ 1

6
axxxx3 þ 1

2
axxyx2y þ 1

2
axxzx2zþ 1

2
axyyxy2 þ axyzxyzþ 1

2
axzzxz2; ðA:4Þ

Byðx; y; zÞ ¼ b0 þ bxxþ byy þ bzzþ
1

2
bxxx2 þ bxyxy þ bxzxzþ 1

2
byyy2 þ byzyz

þ 1

2
bzzz2 þ 1

2
bxxyx2y þ 1

2
bxyyxy2 þ bxyzxyzþ 1

6
byyyy3 þ 1

2
byyzy2zþ 1

2
byzzyz2; ðA:5Þ

Bzðx; y; zÞ ¼ c0 þ cxxþ cyy þ czzþ
1

2
cxxx2 þ cxyxy þ cxzxzþ 1

2
cyyy2 þ cyzyz

þ 1

2
czzz2 þ 1

2
cxxzx2zþ cxyzxyzþ 1

2
cxzzxz2 þ 1

2
cyyzy2zþ 1

2
cyzzyz2 þ 1

6
czzzz3: ðA:6Þ
Imposing the divergence-free condition in a continuous sense gives ten constraints on the coefficients,
ax þ by þ cz ¼ 0; axx þ bxy þ cxz ¼ 0;

axy þ byy þ cyz ¼ 0; axz þ byz þ czz ¼ 0;

axxx þ bxxy þ cxxz ¼ 0; axyy þ byyy þ cyyz ¼ 0;

axzz þ byzz þ czzz ¼ 0; axxy þ bxyy þ cxyz ¼ 0;

axxz þ bxyz þ cxzz ¼ 0; axyz þ byyz þ cyzz ¼ 0:

ðA:7Þ
Note that we have total of 48 coefficients in Eqs. (A.4)–(A.6) and have ten constraints. Thus we have only 38
independent coefficients. However the face profiles described by (A.1)–(A.3) are described by only 35 indepen-
dent numbers if the divergence-free condition must be satisfied. The system of equations is under-determined.
Since we focus on the third-order reconstruction, the third-order terms in the polynomials can be arbitrary
once they satisfy the divergence-free constraints (A.7). Following Balsara [4], we make simplifying choices
for three of the polynomial coefficients and set
byyz ¼ cyzz; axxz ¼ cxzz; axxy ¼ bxyy :
Then the polynomial coefficients become well-determined. Note that the polynomials (A.4) and (A.5) reduce
to (23) and (24) for the 2D case when z ¼ 0 and cxyz ¼ 0. Matching Eqs. (A.4)–(A.6) at the boundaries with
Eqs. (A.1)–(A.3) gives the following solutions for the coefficients
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axy ¼
afþ

y � af�
y

Dx
; axz ¼

afþ
z � af�

z

Dx
; ðA:8Þ

ayy ¼
afþ

yy þ af�
yy

2
; axyy ¼

afþ
yy � af�

yy

Dx
; ðA:9Þ

azz ¼
afþ

zz þ af�
zz

2
; axzz ¼

afþ
zz � af�

zz

Dx
; ðA:10Þ

ayz ¼
afþ

yz þ af�
yz

2
; axyz ¼

afþ
yz � af�

yz

Dx
; ðA:11Þ

bxy ¼
bfþ

x � bf�
x

Dy
; byz ¼

bfþ
z � bf�

z

Dy
; ðA:12Þ

bxx ¼
bfþ

xx þ bf�
xx

2
; bxxy ¼

bfþ
xx � bf�

xx

Dy
; ðA:13Þ

bzz ¼
bfþ

zz þ bf�
zz

2
; byzz ¼

bfþ
zz � bf�

zz

Dy
; ðA:14Þ

bxz ¼
bfþ

xz þ bf�
xz

2
; bxyz ¼

bfþ
xz � bf�

xz

Dy
; ðA:15Þ

cxz ¼
cfþ

x � cf�
x

Dz
; cyz ¼

cfþ
y � cf�

y

Dz
; ðA:16Þ

cxx ¼
cfþ

xx þ cf�
xx

2
; cxxz ¼

cfþ
xx � cf�

xx

Dz
; ðA:17Þ

cyy ¼
cfþ

yy þ cf�
yy

2
; cyyz ¼

cfþ
yy � cf�

yy

Dz
; ðA:18Þ

cxy ¼
cfþ

xy þ cf�
xy

2
; cxyz ¼

cfþ
xy � cf�

xy

Dz
; ðA:19Þ

axx ¼ �ðbxy þ cxzÞ; axxx ¼ �ðbxxy þ cxxzÞ; ðA:20Þ
byy ¼ �ðaxy þ cyzÞ; byyy ¼ �ðaxyy þ cyyzÞ; ðA:21Þ
czz ¼ �ðaxz þ byzÞ; czzz ¼ �ðaxzz þ byzzÞ; ðA:22Þ

axxy ¼ bxyy ¼ �
cxyz

2
; axxz ¼ cxzz ¼ �

bxyz

2
; byyz ¼ cyzz ¼ �

axyz

2
; ðA:23Þ

ay ¼
afþ

y þ af�
y

2
� 1

8
axxyðDxÞ2; az ¼

afþ
z þ af�

z

2
� 1

8
axxzðDxÞ2; ðA:24Þ

bx ¼
bfþ

x þ bf�
x

2
� 1

8
bxyyðDyÞ2; bz ¼

bfþ
z þ bf�

z

2
� 1

8
byyzðDyÞ2; ðA:25Þ

cx ¼
cfþ

x þ cf�
x

2
� 1

8
cxzzðDzÞ2; cy ¼

cfþ
y þ cf�

y

2
� 1

8
cyzzðDzÞ2; ðA:26Þ

a0 ¼
afþ

0 þ af�
0

2
� 1

8
axxðDxÞ2; ax ¼

afþ
0 � af�

0

Dx
� 1

24
axxxðDxÞ2; ðA:27Þ

b0 ¼
bfþ

0 þ bf�
0

2
� 1

8
byyðDyÞ2; by ¼

bfþ
0 � bf�

0

Dy
� 1

24
byyyðDyÞ2; ðA:28Þ

c0 ¼
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0 þ cf�
0

2
� 1

8
czzðDzÞ2; cz ¼

cfþ
0 � cf�

0

Dz
� 1

24
czzzðDzÞ2: ðA:29Þ
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